

Add to Cart
Metal Core Copper Base Bare MC PCB Printed Circuit Boards
Specification:
Layer:2 Layer MCPCB
Name:Two Layer MCPCB,Double Sided MCPCB,Multi-layer optional
Material:Copper base
Raw materials: Aluminum core, Copper Core, Iron Core
Size:8*8CM
There are two types of the platted holes:
a)signal PTHs between TOP and BOT sides with no connection on the Cu core
b)cooling PTHs, which are connected with the Cu core.
There are two types of the platted holes:
a)signal PTHs between TOP and BOT sides with no connection on the Cu core
b)cooling PTHs, which are connected with the Cu core.
Soldermask Super Bright White is the most commonly used with a reflectivity of approximately 89% and other colors such as green, black, red and blue are also available.
Minumum Circuit Width | ||||||
Circuit Thickness | Minium Circuit Width | |||||
35um | 0.13mm | IPC-6012 35.1 80% | ||||
70um | 0.15mm | IPC-6012 35.1 80% | ||||
105um | 0.18mm | IPC-6012 35.1 80% | ||||
140um | 0.20mm | IPC-6012 35.1 80% | ||||
210um | 0.15mm | IPC-6012 35.1 80% | ||||
280um | 0.38mm | IPC-6012 35.1 80% | ||||
350um | 0.38mm | IPC-6012 35.1 80% | ||||
Minumum Space And Gap | ||||||
Single Layer | Multi-Layer | |||||
35um-0.18mm | 35um-0.23mm | IPC-6012 35.2 80% | ||||
70um-0.23mm | 70um-0.28mm | IPC-6012 35.2 80% | ||||
105um-0.3mm | 105um-0.36mm | IPC-6012 35.2 80% | ||||
140um-0.36mm | 140um-0.41mm | IPC-6012 35.2 80% | ||||
210um-0.51mm | 210um-0.56mm | IPC-6012 35.2 80% | ||||
280um-0.61mm | 280um-0.66mm | IPC-6012 35.2 80% | ||||
350um-0.76mm | 350um-0.81mm | IPC-6012 35.2 80% | ||||
Minumum Circuit To Edge Blanking | One Baseplate Material Thickness+0.5mm | |||||
a Minimum Circuit To Edge,V-Scoring | Material Thickness | Circuit To Edge Distance | ||||
1.0mm | 0.66mm | |||||
1.6mm | 0.74mm | |||||
2.0mm | 0.79mm | |||||
3.2mm | 0.94mm | |||||
Metal Core printed circuit board MCPCB
MCPCB means the metal-based printed circuit board (MCPCB), that is, the original printed circuit board attached to a better thermal conductivity of the other metal, can improvethe heat dissipation of the circuit board.
Currently the most common MCPCB including: Aluminium PCB,Copper base PCB,Iron PCB. Aluminum PCB has good heat transferring and dissipation ability, but yet relatively cheaper; copper PCB has even better performance but relatively more expensive, and Iron PCB can be divided into normal steel and stainless steel. It more rigid than both aluminum and copper, but thermal conductivity is lower than them too. People will choose their own base/core material according to their different application.
MCPCB Prototype
To correctly cut the metal core layer without breaking the
insulation,
Accuracy in depth control when cutting is essential.
When counter is routing an aluminum base, a high torque spindle motor is used.
A MCPCB prototype is produced by using machines with precisely
driven
Z-axis, an accurate and ruggedized mechanism, and a flat working
table.
Types of MCPCB (Metal core PCB)
Metal core PCB are sorted according to the location of the metal core and the trace layers of the PCB.
There are 5 main types of metal core PCB and these are
-Single Layer MCPCB (one trace layer on one side),
-COB LED PCB (one trace layer),
-Double Layers MCPCB (two trace layers on one side),
-Double Sided MCPCB (two trace layers on both sides) and
-Multi Layers MCPCB (More than two trace layers on every board).
MCPCB Benefits VS FR4 PCB
Thermal expansion and contraction is the common nature of the substance, different CTE is different in thermal expansion. As its own characterics, aluminum and copper have unique advance than normal FR4, thermal conductivity can be 0.8~3.0 W/c.K.
Flatness maintained in all 3 layers
High Heat Dissipation
High density of components
Reduced PCB size / Small footprint
It is clear that the size of the metal-based printed circuit board more stable than insulating materials. The size change of 2.5 ~ 3.0% when Aluminum PCB and aluminum sandwich panels was heated from 30 ℃ to 140 ~ 150 ℃.
Components operate at lower temperatures
Durable
Higher Watt Density
Longer component life
Less hardware (topical heat sinks, screws, clips, etc)
Lower Manufacturing Cost
Selective dielectric removal can be used to expose inner-layer and or the baseplate for component attachment to these layers which also reduces thermal resistance.
Chip On Board Metal Core PCB
MCPCB is used in thermoelectric separation application Th e Micro-chip or die is directly in touch with the metal core where the heat dissipate. And electrically interconnect the trace of circuit board (wire bonding) so thermal conductivity of COB MCPCB is more than 200 W/m.k.
MCPCB application:
LED lights | High-current LED, Spotlight, high-current PCB |
Industrial power equipment | High-power transistors, transistor arrays, push-pull or totem pole output circuit (to tem pole), solid-state relay, pulse motor driver, the engine Computing amplifiers (Operational amplifier for serro-motor), pole-changing device (Inverter) |
Cars | firing implement, power regulator, exchange converters, power controllers, variable optical system |
Power | voltage regulator series, switching regulator, DC-DC converters |
Audio | input - output amplifier, balanced amplifier, pre-shield amplifier, audio amplifier, power amplifier |
OA | Printer driver, large electronic display substrate, thermal print head |
Audio | input - output amplifier, balanced amplifier, pre-shield amplifier, audio amplifier, power amplifier |
Others | Semiconductor thermal insulation board, IC arrays, resistor arrays, Ics carrier chip, heat sink, solar cell substrates, semiconductor refrigeration device |
Kinds of metal core PCB:
Metal core pcb production:
Metal Core PCBs (Printed Circuit Boards) are specialized circuit boards that have a base layer made of metal, typically aluminum, instead of the traditional FR4 (fiberglass-reinforced epoxy) material. These boards are commonly used in applications that require efficient heat dissipation, such as high-power LED lighting, power supplies, automotive electronics, and power electronics.
The production process for metal core PCBs is similar to that of traditional PCBs but with some additional considerations for the metal layer. Here are the general steps involved in the production of metal core PCBs:
1,Design: Create a PCB layout using PCB design software, taking into account the circuit requirements, component placement, and thermal considerations.,
2,Material Selection: Choose the appropriate metal core material for your application. Aluminum is the most common choice due to its good thermal conductivity, lightweight, and cost-effectiveness. Other options include copper and alloys like aluminum-backed copper-clad laminates.
3,Base Layer Preparation: Start with a metal sheet of the chosen material, typically aluminum. The sheet is cleaned and treated to remove any contaminants and oxidation, ensuring good adhesion between the metal and the PCB layers.,
4,Lamination: Apply a layer of thermally conductive dielectric material, such as an epoxy-based resin, on both sides of the metal core. This dielectric layer provides electrical insulation and helps to bond the copper layers.
5,Copper Cladding: Add a thin layer of copper to both sides of the dielectric material using methods like electroless copper plating or a combination of electroless and electrolytic copper plating. The copper layer serves as the conductive traces and pads for the circuit.,
6,Imaging: Apply a photosensitive resist layer over the copper surfaces. Expose the resist layer to UV light through a photomask that contains the desired circuit pattern. Develop the resist to remove the unexposed areas, leaving the circuit pattern on the copper.
7,Etching: Submerge the board in an etchant solution that removes the unwanted copper, leaving only the circuit traces and pads as defined by the resist layer. Rinse and clean the board thoroughly after etching.,
8,Drilling: Drill holes through the board at designated locations for component mounting and interconnection. These holes are typically plated through with copper to provide electrical continuity between the layers.
9,Plating and Surface Finish: Further copper plating may be performed to increase the thickness of the circuit traces and pads if required. Apply a surface finish, such as HASL (Hot Air Solder Leveling), ENIG (Electroless Nickel Immersion Gold), or OSP (Organic Solderability Preservative), to protect the exposed copper and facilitate soldering.,
10,Solder Mask and Silkscreen: Apply a solder mask to cover the copper traces and pads, leaving only the desired soldering areas exposed. Apply a silkscreen layer to add component labels, reference designators, and other markings.
11,Testing and Inspection: Conduct electrical testing, such as continuity checks and netlist verification, to ensure the integrity of the circuit. Inspect the board for any manufacturing defects or errors.,
12,Assembly: Mount electronic components onto the metal core PCB using automated pick-and-place machines or manual soldering, depending on the complexity and volume of production.
13,Final Testing: Perform functional testing on the assembled PCB to verify its performance and ensure it meets the required specifications.
It's important to note that the production process can vary depending on the specific requirements of the metal core PCB, the chosen materials, and the manufacturer's capabilities. It's recommended to consult with a professional PCB manufacturer for specific guidelines and recommendations tailored to your project.
Metal core pcb thickness:
The thickness of a metal core PCB (Printed Circuit Board) refers to the overall thickness of the PCB, including the metal core and all the additional layers. The thickness of a metal core PCB is determined by several factors, including the application requirements, the choice of metal core material, and the number of copper layers and their thickness.
Typically, metal core PCBs have a total thickness ranging from 0.8mm to 3.2mm, although thicker boards can be produced for specific applications. The metal core itself contributes to a significant portion of the overall thickness.
The metal core thickness can vary depending on the thermal conductivity requirements and mechanical stability needed for the specific application. Aluminum is one of the commonly used metal core materials due to its good thermal conductivity and lightweight nature. The aluminum core thickness can range from around 0.5mm to 3.0mm, with 1.0mm and 1.6mm being common choices.
In addition to the metal core, the overall thickness of the PCB includes other layers such as dielectric material, copper traces, solder mask, and surface finish. The dielectric layer thickness is typically in the range of 0.05mm to 0.2mm, while the copper layer thickness can vary depending on the specific requirements of the circuit design, such as current-carrying capacity. Typical copper layer thicknesses range from 17µm (0.5oz) to 140µm (4oz) or higher.
It's important to note that the thickness requirements for metal core PCBs can vary significantly based on the application and specific design considerations. It's recommended to consult with a PCB manufacturer or design engineer to determine the appropriate thickness based on your project's requirements and constraints.