

Add to Cart
2 Layer Rogers 6006 / 6010 HF PCB High Frequency Printed Circuit Boards
Rogers PCB information:
Material:rogers6010 0.635MM
DK:10.2
Layer:2
Surface finish: immersion gold
Application:Microwave / RF field
Board thickness:0.8MM
Min lind width and space:8mil
Min hole:0.3MM
Features and benefits:
• High dielectric constant for circuit size reduction
• Low loss. Ideal for operating at X-band or below
• Low Z-axis expansion for RT/ duroid 6010LM. Provides reliable
plated through holes in multilayer boards
• Low moisture absorption for RT/duroid 6010LM. Reduces effects of moisture on electrical loss
• Tight and thickness control for repeatable circuit performance
Rogers 6006 / 6010 information:
RT/duroid 6006/6010LM microwave laminates are ceramic-
PTFE composites designed for electronic and microwave circuit
applications requiring a high dielectric constant. RT/duroid 6006
laminate is available with a dielectric constant value of 6.15 and
RT/duroid 6010LM laminate has a dielectric constant of 10.2.
RT/duroid 6006/6010LM microwave laminates feature ease of fabrication
and stability in use. They have tight dielectric constant and thickness
control, low moisture absorption, and good thermal mechanical stability.
Standard tolerance dielectric thicknesses of 0.010”, 0.025”, 0.050”, 0.075”,
and 0.100” (0.254, 0.635, 1.270, 1.905, 2.54 mm) are available. When
ordering RT/duroid 6006 and RT/duroid 6010LM laminates, it is important
to specify dielectric thickness and weight of copper foil required.
High frequency PCB range:
Frequency Range: High-frequency PCBs are designed to operate in frequency ranges typically starting from a few megahertz (MHz) and extending into the gigahertz (GHz) and terahertz (THz) ranges. These PCBs are commonly used in applications such as wireless communication systems (e.g., cellular networks, Wi-Fi, Bluetooth), radar systems, satellite communication, and high-speed data transmission.
Signal Loss and Dispersion: At high frequencies, signal loss and dispersion become significant concerns. High-frequency PCBs employ techniques to minimize these effects, such as using low-loss dielectric materials, controlled impedance routing, and minimizing the length and number of vias.
PCB Stackup: The stackup configuration of a high-frequency PCB is carefully designed to address signal integrity requirements. It typically consists of multiple layers of copper traces, dielectric materials, and ground planes. The arrangement of these layers is optimized to control impedance, minimize crosstalk, and provide shielding.
RF Connectors: High-frequency PCBs often incorporate specialized RF connectors to ensure proper signal transmission and minimize losses. These connectors are designed to maintain consistent impedance and minimize reflections.
Electromagnetic Compatibility (EMC): High-frequency PCBs must comply with electromagnetic compatibility standards to prevent interference with other electronic devices and to avoid susceptibility to external interference. Proper grounding, shielding, and filtering techniques are employed to address EMC requirements.
Simulation and Analysis: Designing high-frequency PCBs often involves simulation and analysis using specialized software tools. These tools allow designers to assess signal integrity, impedance matching, and electromagnetic behavior before fabrication, helping to optimize the PCB design for high-frequency performance.
Fabrication Challenges: Fabricating high-frequency PCBs can be more challenging compared to standard PCBs. The use of specialized materials, controlled impedance requirements, and tight tolerances require advanced fabrication techniques such as accurate etching, controlled dielectric thickness, and precise drilling and plating processes.
Testing and Validation: High-frequency PCBs undergo rigorous testing and validation to ensure their performance meets the desired specifications. This includes impedance testing, signal integrity analysis, insertion loss measurement, and other RF and microwave tests.
It's important to note that the design and manufacturing of high-frequency PCBs are specialized areas requiring expertise in RF and microwave engineering, PCB layout, and fabrication processes. Working with experienced professionals and consulting relevant design guidelines and standards is crucial to ensure reliable performance at high frequencies.
High frequency PCB description:
High frequency PCB material in stock:
Brand | Model | Thickness(mm) | DK(ER) |
Rogers | RO4003C | 0.203mm,0.305mm,0.406mm,0.508mm,0.813mm,1.524mm | 3.38 ± 0.05 |
RO4350B | 0.101mm,0.168mm,0.254mm,0.338mm,0.422mm,0.508mm,0.762mm,1.524mm | 3.48 ± 0.05 | |
RO4360G2 | 0.203mm,0.305mm,0.406mm,0.508mm,0.610mm,0.813mm,1.524mm | 6.15 ± 0.15 | |
RO4835 | 0.168mm,0.254mm,0.338mm,0.422mm,0.508mm,0.591mm, 0.676mm,0.762mm,1.524mm | 3.48 ± 0.05 | |
RT5870 | 0.127mm,0.787mm,0.254mm,1.575mm,0.381mm,3.175mm,0.508mm | 2.33 2.33 ± 0.02 | |
RT5880 | 0.127mm,0.787mm,0.254mm,1.575mm,0.381mm,3.175mm,0.508mm | 2.20 2.20 ± 0.02 | |
RO3003 | 0.13mm,0.25mm,0.50mm,0.75mm,1.52mm | 3.00 ±0.04 | |
RO3010 | 0.13mm,0.25mm,0.64mm,1.28mm | 10.2 ± 0.30 | |
RO3006 | 0.13mm,0.25mm,0.64mm,1.28mm | 6.15 ± 0.15 | |
RO3203 | 0.25mm,0.50mm,0.75mm,1.52mm | 3.02±0.04 | |
RO3210 | 0.64mm,1.28mm | 10.2±0.50 | |
RO3206 | 0.64mm,1.28mm | 6.15±0.15 | |
R03035 | 0.13mm,0.25mm,0.50mm,0.75mm,1.52mm | 3.50 ± 0.05 | |
RT6002 | 0.127mm,0.254mm,0.508mm,0.762mm,1.524mm,3.048mm | 2.94 ± 0.04 | |
RT6006 | 0.127mm,0.254mm,0.635mm,1.27mm,1.90mm,2.50mm | 6.15± 0.15 | |
RT6010 | 0.127mm,0.254mm,0.635mm,1.27mm,1.90mm,2.50mm | 10.2 ± 0.25 | |
TACONIC | TLX-8.TLX-9 | 0.508. 0.762 | 2.45-2.65 |
TLC-32 | 0.254,0.508,0.762 | 3.35 | |
TLY-5 | 0.254,0.508.0.8, | 2.2 | |
RF-60A | 0.254.0.508.0.762 | 6.15 | |
CER-10 | 0.254.0.508.0.762 | 10 | |
RF-30 | 0.254.0.508.0.762 | 3 | |
TLA-35 | 0.8 | 3.2 | |
ARLON | AD255C06099C | 1.5 | 2.55 |
MCG0300CG | 0.8 | 3.7 | |
AD0300C | 0.8 | 3 | |
AD255C03099C | 0.8 | 2.55 | |
AD255C04099C | 1 | 2.55 | |
DLC220 | 1 | 2.2 |